SARS-CoV-2 and Biosafety in Laboratory

Arwa M. Al-Shuwaikh\(^\text{1}\) PhD, Rana M. Al-Shwaikh\(^\text{2}\) PhD, Dalya B. Hanna\(^\text{3}\) PhD

\(^1\)Dept. of Microbiology, College of Medicine, Al-Nahrain University, Baghdad, Iraq. \(^2\)Dept. of Biology, College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq. \(^3\)Dept. of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyyah University, Baghdad, Iraq

Abstract

The newly discovered coronavirus (Severe acute respiratory syndrome coronavirus-2, SARS-CoV-2) is the causative agent of the ongoing pandemic. Broad arrangement has been done to minimize virus spreading among population and to control the worldwide outbreak. Expanded biosafety measure specifically with respect to the work require using SARS-CoV-2 in laboratory (lab.) and a special consideration should be taken to protect researcher and lab. worker during handling of specimens. Therefore, the aim of this review is to help the scientists, researchers, lab. staff and biosafety specialists to respond to the current coronavirus disease (COVID-19) through discussion of effective biosafety practices that can prevent laboratory acquired infections and to lessen the spread of infection into community and environment.

Keywords: Coronavirus, COVID-19, biosafety, research, laboratories

List of abbreviations: BSC = Biological safety cabinet, BSL = Biosafety level, COVID-19 = Coronavirus disease 2019, HEPA = High-efficiency particulate air, Lab. = Laboratory, PPE = Personal protective equipment, SARS = Severe acute respiratory syndrome

1- Introduction

Coronavirus is one of the respiratory viruses that infect human. Outbreaks of coronaviruses have been previously reported; in 2003, the severe acute respiratory syndrome (SARS) and in 2012, the Middle East respiratory syndrome (MERS) were considered as a serious public health threat. In 2019, a novel coronavirus was emerged in Wuhan, China that is now named SARS-CoV-2 that cause coronavirus disease-19 (COVID-19) \(^1\). World health organization (WHO) announced that COVID-19 is an international health emergency on Jan. 30, 2020, the natural history of this disease is still not fully known, however, infected person was shown to be able to transmit infection before they become symptomatic, and days after recovery \(^2\). An increasing number of cases is recorded every day, override 38 million cases worldwide were recorded till the time of writing this manuscript \(^3\). Researchers and laboratories accepting specimens from patients under investigation for SARS-CoV-2 must be aware about proper handling of these specimens poses a risk of exposure or infection, which could seriously affect the staff and the community. SARS-CoV-2 has been classified as a hazard group 3 human pathogen by the Centre for Biosecurity \(^4\).

2- Types of transmission and precautions

Understanding the SARS-CoV-2 mode of transmission can help to select the most suitable personal protective equipment (PPE) and disinfection procedures. SARS-CoV-2 transmission occurs mainly via droplets
(aerosol) and also contaminated surfaces (fomites). In addition, the level of exposure i.e.,
the amount of virus that acquire by healthcare worker has an influence on the severity of
disease. Transmission through direct aerosol spread from a patient to the health worker via
talking, coughing or sneezing, however, a safe
distance of approximately 2 meter is
recommended to reduce the virus spreading (5).
van Doremalen et al. (2020) found that SARS-
CoV-2 can be detected in aerosols for up to 3 h
with a decrease in viral particles concentration
from $10^{3.5}$ to $10^{2.7}$ TCID50/L of air (6).
Also, SARS-CoV-2 indirect transmission has
been reported via environmental, therefore
contaminated surfaces can rising the risk of
contact transmission and nosocomial infection
(7). van Doremalen et al. (2020) found that
SARS-CoV-2 was more stable on plastic and
stainless steel than on copper and cardboard
and can detected up to 72 h on these surfaces,
however, the virus concentration was
decreased from $10^{3.7}$ to $10^{0.6}$ TCID50/ml of
medium on plastic and stainless steel after 72
and 48 h, respectively. While, no viable SARS-
CoV-2 was detected on copper and cardboard
after 4 and 24 hr, respectively (6).

3- Risk Assessment
There are different hazards may encounter in
lab. including sharps, chemical, biological and
radiation. A Biohazard is a biological agents or
substance that can cause human or animal
disease and may present a hazard to the health
of an individual working with the agent.
Biohazard include microorganisms such as
bacteria, viruses, parasites and fungi. Biohazard
also include samples from humans or animals
that an individual will work with either for
diagnosis or research. The infection control
measures including both administrative and
environmental control measures. The
administrative strategies are creating policies,
plan for emergency and provide instruction and
trainings, while the environmental strategies
include providing good ventilation, building up
isolation rooms with negative pressure, and
creating frameworks for sterilization,
disinfection and biohazard waste disposal (8).
Several organizations developed guidelines
that discuss methods for handling and
processing SARS-CoV-2 suspected specimen (4,
9,10). The biosafety level should be determined
depending on the risk assessment and the
hazard of pathogen, detection method or
experimental technique used by authorized
personnel (11). Risk assessment is the detection
of hazards and risks that could adversely affect
individuals, and/or the environment, their
likelihood and consequences. These
assessments help to define the risks and
include steps, protocols and controls to
minimize the effect on work activities (12). The
results of this process may be expressed in a
quantitative or qualitative fashion. Risk
assessment is a part of a broader risk
management strategy to help reduce any
potential risk-related consequences and it need
to be carried out before work/activity starts. All
biological agents require risk assessment and
approval before work can proceed. Work
would be blocked if the suitable facilities not
provide adequate protection to staff, students
and environment (12,13).

4- Building facilities
Facilities for undergoing research for SARS-
CoV-2 should strictly implement the
appropriate biosafety practices inside the lab.
Both biosafety level-2 (BSL-2) and biosafety
level-3 (BSL-3) are the required lab. set-up
when handling SARS-CoV-2. All inactivated
specimens should be performed in a validated
biological safety cabinet class-II (BSC-II). The
diagnosis methods that not require growth of
the virus, such as amplification of virus nucleic
acid or sequencing and another routine lab.
tests such as biochemical and serological tests
should be performed in BSL-2, while diagnosis
methods that require the growth of virus such
as virus isolation, tissue culture or
neutralization assays should be performed in
BSL-3 (9,10).
In addition, procedure that require inoculation of virus in animals should be performed in BSL-3 animal facilities \(^{(11)}\). Any procedure that generate aerosols should be performed at BSC-II \(^{(10)}\). WHO highly advises that national governments keep a list of licensed laboratories that keep and working with suspected or confirmed specimens of SARS patients \(^{(14)}\) and the laboratories are required to engage in external quality management programs \(^{(15)}\) (Figure 1).

![Diagram of SARS-CoV-2 suspected samples]

Figure 1. Building facilities required for SARS-CoV-2 suspected sample

The BSL-2 lab. should be physically segregated, with restricted access, from other operation areas in the same building. Staff should have access to a protective clothing dressing area. It is recommended to put the autoclave in a contained area \(^{(10,11)}\), (Figure 2). The BSL-3 lab. should be physically isolated from other areas of operation or placed in a different building and have double doors that are self-closing. In the enclosed area, an electronically powered sink for hand washing and communication network with the outside should be present. There could be an emergency shower placed in the lab. Staff should have access to a protective clothing dressing area. To prevent the leakage of contaminants from inside to outside, the work area is kept at negative air pressure. After filtration via a high-efficiency particulate air (HEPA) filter, so air is exhausted from the lab and can't be re-circulated inside the building unless a second HEPA filter is installed in the exhaust system \(^{(11,16)}\).

5- Lab worker personnel

Laboratories should, as far as possible, encourage social distance within the workplace and monitor the likelihood of any daily exposure and health status of lab. staff \(^{(18)}\). Workers dealing with SARS-CoV or samples possibly carrying the virus should be educated on the signs of infection and recommended to report promptly to their boss any fever or respiratory symptoms \(^{(19)}\). After an observational time, personnel with prior BSL-3
expertise will be cleared to operate in the facility under supervision. The length of the training period depends on the skill and competence of the required techniques. In addition, those who working in the BSL-3 facility should be immunocompetent [16], therefore a high-risk group (e.g., over 70 years of age, pregnant, those with immune deficiencies or underlying medical conditions) should not work with SARS-CoV-2.

![Image](image1)

Figure 2. Biosafety level-2 (BSL-2) facility (A), Biosafety level-3 (BSL-3) facility (B) [17]

Institutions engaged in SARS coronavirus study should include the storage of a serum sample of individuals working with viruses or specimens containing viruses [19]. When real-time polymerase chain reaction (RT-PCR) findings are negative, the four-fold increasing in antibody titer between acute and convalescent phase sera could help COVID-19 diagnosis [20]. In addition, these organizations should establish and incorporate a clear occupational medical strategy. At a minimum, the strategy should include management procedures: identifiable breaks in lab. procedures; symptom-free employees; symptomatic employees within 10 days of exposure; and symptomatic lab. workers without known exposure [19].

6- **Personal Protective Equipment (PPE)**

Due to less effectiveness compared to other approaches and high cost in the long term, the PPE is rated as the lowest in the infection control measure. PPE can only be used in combination with other regulatory and environmental control measures [8]. Full PPE including disposable gloves, lab. coat, class two filtering face-piece respirator and eye cover such as goggles or face shield should be worn by lab. staff while dealing with hazardous materials [7,10,21] and particular attention should be paid to hand hygiene after removal of gloves by regular hand washing with soap and water for at least 40 sec. and careful attention should be given to hand hygiene after removal of gloves [11,18]. Authorized filter respirator N-95 or higher standard (i.e., R95, P100, Powered air purifying respirator (PAPR) fitted with HEPA filters) should be used as recommended by the National Institute for Occupational Safety and Health (NIOSH); while the lower level of protection is not accepted [2,10,19] (Figure 3). However, it has been shown that the detection of influenza virus and coronavirus RNA in respiratory droplets and aerosols, respectively has been greatly reduced by surgical face masks [22].
There are various N95 mask brands from multiple manufacturers available. At 95 percent filtration efficiency, N95 is not resistant to oil. For oily solvents with 95 percent filtering efficiency, R95 is recommended. Higher designations like P100 mean that 99.99 percent of particles are flushed out. Fit checking for the N95 respirator is needed because it is a negative pressure respirator, so it should be perfectly shaven for N-95 users to match the mask fit test. However, fit checking for PAPR is not needed because the atmosphere of the breathing zone is under positive pressure and so a tight seal is not needed for proper operation, a PAPR can be used for users with beards (2). After facing each patient, the instructions recommended the disposal of N95 respirators (23). The lack of PPE forced hospitals to change infection control strategies after the COVID-19 pandemic. CDC endorsed N95 reuse techniques, even for the length of their shifts, workers reusing their own N95s. They tested decontaminate and reuse N95 at Duke University Health System using BSL3 facility Hydrogen Peroxide Vapor processing room to prolong their life and verified that the respirator already works for more than 50 times after 4 h of decontamination (24). Also, Daeschler et al. (2020) observed that SARS-CoV-2 was inactivated by a single heat treatment for 60 min. at 70 °C at either 0 percent or 50 percent relative humidity in N95-respirators for more than 10 times. This is known to be a low-cost, rapid decontamination method for the secure reuse of disposable N95 respirators (25). In addition, after disinfection with 1000 mg/L chlorine-containing disinfectant for 30 min, the PAPR could be reused after all sections repeatedly and uniformly cleaned with a soft cloth dipped in clean water (26).

7- Specimens collection, transport and storage
During sample collection, it is crucial to adhere to the standard infection control practice and the use of complete PPE (20). SARS-CoV-2 is an enveloped virus i.e., fragile, therefore care should be taken during sample collection and transportation. For molecular diagnosis, samples need to transported in viral transport medium (VTM). Specimens that would be directly sent to the lab. can be stored at 2-8 °C, but specimens will be frozen at -70 °C (dry ice) while there is a delay in specimens reaching the lab. (15,20). Samples should be clearly labeled and stored frozen separately from other samples in restricted-entry locked freezers (11).

Specimens should be brought in special delivery tanks and boxes that satisfy the criteria for biosafety (26). SARS specimens should be wrapped, secured and decontaminated as key containers for transportation within the facility (19). But samples should be packaged in triple packs for shipment outside the facility in compliance with the WHO post-outbreak biosafety recommendations (14) and the International Air Transport Association (IATA) for hazardous
goods regulations (27). The United Nation model regulations should be followed by international transportation (15).

8- Biosafety of laboratory diagnosis
While respiratory samples have the highest yield, in other specimens, including stool and blood, the virus can also be identified. Nucleic acid amplification test, such as RT-PCR, can be used to screen the suspected cases of the virus (15), that targeting SARS-CoV-2 RNA-dependent RNA polymerase and E genes (7,28). Serological testing could aid in the detection of a current pandemic of SARS-CoV-2, retrospective estimation of the occurrence rate of an outbreak, and could help the diagnosis of COVID-19 if the outcome of RT-PCR is negative (20,29).

Any operation with the ability to produce aerosols should be performed inside a certified BSC-II. Using enclosed centrifuge rotors for centrifugation, or a guard bowl with gasketed cover. Procedures carried out outside a BSC must be carried out in a way that minimizes the hazard of exposure to employees and release to the environment (19). In the event of any accident during centrifugation, the lab. worker can pause the centrifuge, wear the BSL-3 PPE, wait half an hour for the centrifuge lid to release, and spray 75 percent ethanol. After that, the rotor with the specimen to be treated in the biosafety cabinet should be taken out (18).

After exposure to numerous widely used disinfectants and fixatives, a related coronavirus which causes SARS loses infectivity. However, acetone fixation for immunofluorescence assays at room temperature does not effectively kill the SARS virus until the acetone is cooled down to -20 °C (30). Sera should be inactivated for 30 min. before analysis at 58 °C exposure. Tissue inactivated by formalin fixation for pathological analysis, fixation of smears for regular staining and microscopic tests and extraction of nucleic acid for PCR. Although it should be remembered that infectious RNA can be present in inactivated clinical samples (13). Where appropriate, it is important to use automated instruments and analyzers. Aerosol-generating sample processing steps should be conducted in a BSC-II to manually treat non-respiratory specimens, wearing the recommended PPE (18).

9- Decontaminate equipment and surfaces
The virus sensitivity to inactivation is dependent on the environment and virus concentration (31). Coronaviruses are enveloped viruses and generally thermo-labile (11). Most disinfectants can easily affect the outer layer of the virus envelope (32). The amount of time the virus is expected to survive depends on the sort of virus-containing substance or body fluid and different environmental factors, such as temperature or humidity (11). It has shown that it is possible to kill a similar coronavirus that causes SARS at 56 °C at about 10000 units per 15 min (30). Therefore, decontamination of work surfaces and disinfectant equipment is important using disinfectants at least every 3 h (10,32). In addition, hazard specimens should be disinfected or autoclaved immediately (18).

It has been demonstrated that through disinfecting surfaces with 62-71 percent alcohol or 0.5 percent hydrogen peroxide bleach or household bleach containing 0.1 percent sodium hypochlorite, coronaviruses may be inactivated within minutes. Now a catalog of disinfectants that can be used against the SARS CoV-2 virus has been released by the US Environmental Protection Agency (EPA) (33). The virus was destroyed in a report by Chin et al. (2020) by incubating a virus culture for 5 min with different disinfectants, such as 1:50 household bleach, 60-70 percent ethanol, 7.5 percent povidone iodine, 0.05 percent chloroxylenol or chlorhexidine and 0.2 percent to 0.4 percent benzalkonium chloride (34).

It is also recommended that an appropriate freshly prepared chlorine disinfectant (5500 mg/L) be used for > 30 min if the suspected specimen has leaked or generated BSC or
bench contamination. When lab. exposure is caused by positive specimens, the lab. room is closed to avoid contaminants from spreading, then the infected area should be cleaned with an appropriate chlorine containing towel (5500 mg/L) for > 30 min. Miscellaneous disinfectants (e.g., peracetic acid (2 g/m³), H₂O₂ (3%), chlorine dioxide (100 mg/L)) may be used for overnight lab. fumigation, or aerosol disinfectants may be sprayed for 1-2 hours.¹⁸

10- Waste management
Specimens and tissue culture should be disinfected or autoclaved and collected in leak-proof containers with their tops properly sealed prior to disposal.⁹ Sharp items can be disposed of in a separate plastic box, sealed and sprayed with chlorine-containing 1000 mg/L disinfectant. Medical waste should be stored in a double-layer waste bag, wrapped in a gooseneck manner with cable ties, and sprayed with 1000 mg/L of chlorine containing disinfectant. Shift of waste to another facility with decontamination capability if decontamination is not feasible on site.⁹,²⁶ Bagged waste gathered into a collection box for hazardous waste, apply a special label for pathogen, completely enclose and transfer the box. Move the waste to a temporary medical waste collection point along the designated route at a set time point and store the waste separately at a fixed location until the licensed medical waste disposal contractor collects and disposes of it.²⁶

11- Biosecurity
There should be limits on entry to labs. A list of approved personnel engaged in the collection and archiving of COVID-19 samples should be preserved and circulated for bio-safety and biosafety purposes with the appropriate authorities. Sample storage zones, including those outside the main labs, should be guarded. Access to test databases, including storage locations and information, should be restricted to the relevant staff only.³⁵ It is desirable that two individuals work together while tissue culture is conducted in the BSL-3 lab. If it is not possible, however, it is mandatory that at least one other person be present directly outside the BL3 region of the lab. This person will be responsible for the continuous surveillance of the BSL-3 operation by means of internal video equipment.¹⁶

12- Conclusion
It is essential to develop biosafety training and standard operative procedures for Iraqi laboratories, in addition establish emergency plans and practices for incidents that may occur in the lab. staff must be supplied with the necessary PPE that they need to comfortably do their work. A biosafety level must be determined based on the risk assessment in order to carry out research work on SARS-CoV-2. Moreover, due to special requirement needed to work with highly infectious viruses, the laboratories performing viral diagnosis in Iraq should be limited to only certified laboratories.

References
Al-Shuwaikh et al, SARS-CoV-2 and Biosafety in Laboratory

Correspondence to Dr. Arwa M. Al-Shuwaikh
E-mail: arwa_alshuwaikh_2004@yahoo.com, arwa.mujahid@ced.nahrainuniv.edu.iq
Copyright of Iraqi Journal of Medical Sciences is the property of Republic of Iraq Ministry of Higher Education & Scientific Research (MOHESR) and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.